
1

Ernesto Posse Takahashi

Departamento de Ingenierfa Sistemas y Computación
Universidad de los

Apartado Aereo
Bogotá , Colombia,

mposada@impsat.net.co stakahas@uniandes.edu.co

9, 1997

Abstract

EPowerFuL is a typed extension of PowerFuL, an functionallanguage extended with the
concept of set abstraction to allow a logic of programming. EPowerFuL adds a type system in the
style of !VIL (maintaining the semantics) vvith strong typing, user-defined types, data constructors,
and pattern matching.

This paper presents EPowerFuL's syntax and semantics. The Extended PmverFuL Abstract l\!Iachine,
an extension of the PowerFuL Abstract ~Iachine is briefly described.

Programming Language design and implementation, Functional Languages, Logic Lan-
guages

There have been attempts to bríng functional and logic programming together [BL86]. Most of these ap-
proaches have taken the logic paradigmas the starting Others extend a functionallanguage
with concepts extracted from logíc programming. PowerFuL falls into thís category.

The core of PowerFuL is the non-strict .?,-calculus enriched with severa! usual basíc prirnitive constructs
such as conditionals, predicates, etc. This core is extended with the concept of set abstraction. Sets a.re
first.-class objects, so they can be passed as arguments t.o any function, returnecl as values, and be part of any
data structure. EPowerFuL adds a type system in the style of :\IL (maintaining the lazy semantics) [Mil84]
[l\ITHM97] with strong typing, user-clefined types, elata constructors, and pattern matching. The type
system allm;-s nser defined types, and pattern rnatching as found ín contemporary functional programming
languages. -~ríthmetic operations can be made available [Tak94], but as in Prolog, their implementation
inYolves extra-logical operations.

PowerFuL's set abstraction may seem equivalent to the concept of list comprehensíon found in ;oome
functionallanguages such as Haskell [JP97]. PowerFuL uses an interesting optimization technique
for generating sets through narrowing, ancl EPowerFuL allows the use of types as set generators in additíon
to expressions.

The PowerFuL Abstmct Machine Plü\I for short), is an abstract operational model for PowerFuL
[Tak94]. It. is an extension of the Categorical Abstmct Machine [CCivi85] [IVUt86], an operational
model for functionallanguages. It also borrmn elements of the Warren Abstract M achine [\iVar83]
EPowerFuL 's implementation model ís an extension of the •.vhich is able to cleal with user definecl
types.

In this paper we \vil! cover the syntax of EPowerFuL (Section 2), its clenotational semantics accompaniecl
with an informal description of the semantics (Section 3), followed by a brief description of the abstraer
machine, and a clescription of the compilation (Sectíon 4)

629

2 Syntax

Now we present the BNF of EPowerFuL. Terminal symbols are m teletype, non-terminal symbols are m
italic.

strnt ::=

define ident if ier as expr·
e.xpr
type identifier = type_expr

expT ::=

atornic_expr

(* Value definition *)

(* Type clefinition *)

v.na.ry_openLtor atornic_expr (* Unary primitives
e.1:pr 1 úinaryJJperator expr2 (* Binary primitives
if expT¡ then e:cpr2 else expr3 (* Conditional *)
fun pattern_rna.tch_list (* Functional abstraction *)
expT¡ e:rpr2 (* Functional application *)
let identifier = expq in expr2 (* Local scoping *)
{ eXJ!T } (* Singleton *)
{ e1:pr : quali.fieT_list } (* Set comprehension *)

a.tomicexpr : :=

constant
identifier
(expr _list)
constr11ctor atornicexpT

(* Literal value *)
(* Variables *)
(* Tuples *)
(* Constructor application *)

constant ::=

true 1 false 'identifier 1 integer 1 tphi

v.naTy_operator ::=

not 1 - 1 fst 1 snd 1 isphi?

/JinaTy_opeTo.tor ::=

and 1 or 1 = 1 < <= 1 > 1 >=
1 + 1 - 1 * 1 1 mod

1 u

e;rpr Jist
e:r:pT 1 e:r:pT , eJ;pr_list

q11o.lifieT_list ::=

r¡no.li.f'ier·
1 qv.alifier , qv.a.lifier _list

r¡nalifier ::=

identifier in set
1 e:cpr

,.,·et ::==

base_type
identifier
expT

pa.ttenLrrwtch_li.sl ::=

po.itern_rnatch

(* Set union *)

(* Set membership *)
(* Guard, condition *)

(* bool, aton1, or int *)
(* User defined type *)
(* Any set *)

1 po.ttcnLrna.tch 1 po.Uernsnatch_l,ist

pattenLma.tch ::=

po.l.teTn -> e.xpT

patteTn ::=

constant
1 identifier
1 constrnctoT expT
1 (pattent1 pattern2

630

(* Nu abstraction *)

(* Constant pattern
(* Variable pattern
(* Constructor pattern *)
(* Pair pattern *)

constr-uctoT : :=

identifier

type_ec¡;pr ::=
identifier
base_type
type_e.Tpr * type_expr

' sum_type

!Jo.se_type : :=

bool 1 atom 1 int

sum_iype ::=

constructor _declo.ro.tion

constructoT _declaration : :=

constructor _declaration 1 sum_type

constructor 1 constructor type_e:cpr

3 Semantics

3ol Informal semantics

The relevant aspect of the language is set abstraction. As in untyped PmYer FuL, there are four
for sets in EPowerFuL:

l. The constant phi: It represents the empty set.

2. The singleton: { expr} . Its value is the set whose only element is the Yalue of eTpL

3. The union bet\Yeen sets: e1:pr1 U expr2. Its value is the union of the '.·alue of expr1 and the value of
ex]Jr2 , which are set expressions.

4. The set comprehension: : qualifier Jist }. Its val u e depends on the form of the qualifiers. There
are two kinds of qualifiers: membership constraints in set), and guards (a Boolean ex­
pression). The first declares a variable whose value will be taken from the given set. This variable can
appear both in e:r;pr, and the rest of the qualifier list. A guard describes a condition that should be
satisfied, and may include Yariables declared membership constraints. Thus, if the set expression is
of the form id in .set, qualijier Ji st}, it denotes the union of al! subsets denoted clauses
of the form qualifier Jist}, where in each such expression, al! free occurrences of 'td haYe
been replacecl by an element of set (\\·here set can be either an expression denoting a set, a base
such as bool, atom or int, ora user-defined type).

The language has non-strict semantics, so it uses lazy evaluation for data structures, function application.
and set abstraction.

The domain of Yalues in EPmverFuL is:

D = B +A+ Z + D x D + D--+ D + P(D) + T1 + ... + Tn

\Vherc each Ti is a user definecl type. There are two forms of user-defined types: product types (tuples), ancl
sum types (yariants): A type defined as type t = ti * t2 * ... * tn stands for the type of tuples whose
i-th value is of type ti. A type defined as type t = Ci ti 1 C2 t2 1 ... 1 Cn tn represents the disjoim
union of t~·pes t 1, t2, ... , tn. X o te that ea eh alterna ti ve is distinguished by a data constructor.

A simple example of the traditional functional style in EPowerFuL is the following:

C•Type definition *)

type list = Nil 1 Cons int * list

('·' Empty list7 •)

define isNil as
fun Nil -> True

1 Cons(y,l1) -> Fa1se

(* Functional list append *)

define append as
fun Nil -> (fun l -> l)

Cons(x,11) -> (fun 12 -> Cons (x, append 11 12) ;

Now an example of the logical style achieved in PowerFuL:

(* The set of prefixes of a given 1ist lst *)

{ x: x in list, y in list, 1st= append x y};

The same idea could be expressed in a logicallanguage such as Prolog, but in Prolog the interpreter would
give us al! the solutions independently, while here we have all the solutions grouped in a set vYhich is a first­
class value.

Another interesting example is a function that returns the set of all permutations of a gíyen líst:

(* Membership toa list: functional sty1e *)
define member as fun elem ->

fun Nil -> False
1 Cons(y,l1) -> if x = y then true else member elem 11

(* Remove an e1ement of a list: functiona1 style *)
define remove as fun elem ->

fun Nil -> nil
1 Cons(y,ll) -> if x = 11 then true else Cons(y, remove elem 11)

(* Permutations a list's elements: functional logic style *)

define permutations as fun 1st ->
if isNil 1st then Nil
el se

{ Cons(x, y): x in int, member x lst, y in permutations (remove x lst) }

3.2 Denotational Semantics

Semantic function [applied to an EPowerFuL expression and an environment returns a value in domain D.
The following notation is used : pisan environment whose signature is p: Identifiers--+ D. p(úl) is the
value associatecl with the identifier id in the environment ,o. ,o[d/id] represents the environment in which id
is bound to d. That is: ,o[d/id] = Ax.if x =id then d else p(x) Figure llist the semantic equations.

3.2.1 Pattern mat.ching

To handle pattern matching we need a couple of auxiliary functions. Function P iterates over the
in the function clefinition until it finds one that matches its argument.

P(arg, [],p) = .L
P(arg, [p- > ejTest],p) =

Let T = M(arg,[p],[e],p) in P(arg, [Test],p))

Function P uses function)\// \vhich verifies if the argument matches the corresponding pattern, and if
so, it evaluates the corresponding expression with the appropriate bindings. It returns a pair whose first
element is True if the match succeeded and False otherwise. Aclditionally, if it succeecls, the second clernent
is the val u e of the expression; if not, it is bottom (_L) o

\Ve assume we have two functions: CheckCons and RetrCnstr. The first verifies the presence of a
givcn constructor, ancl the sccond removes the constructor from its argument. In section 3.2.3 there is an
explanation of these functions.

"' Case 1: \Vhen the pattern is a constant k:

E[constant] p = constant
[[ident ifier] p = p(ident if ier) if p(ident iiier) is defined

= Variable(identifier) otherwise
E[C cTpr]p = CnstrctApp(C,t'[expr]p)

vVhere C is a data constructor ofa sum type.
OT·yop expr] p = UnaryOp(E[expr] p)

vVhere unaryop E {not, -,fst, snd, isphi?}
and UnaryOp E {Not,Neg,Left,Right,IsPhi}.
The correspondence between unaryop and UnaryOp should be ob\·ious.

E[upr¡ binaryop expr2] p = BinaryOp(E[expr¡] p, E[ex]H2] p)
\Vhere binaryop E {and,or,<,<=,>.>=,+,-,*,/,mod,U}
and BinaryOp E {And, Or, Lt, Lte, Gt. Gte, Plus, Minus, Times, Div, Mod, Union}.
The correspondence between binaryop and BinaryOp should be obvious

E[e.rpr¡ expr2]P = DeqD(T[expq],E[expr¡]p,E[expr2]P)
'vVhere T is the function that returns the type of a gh·en expression.
DeqD, is a function defined in section 3.2.2

E[if expr¡ then expr2 else expr3)] p = IF(E[exprl] p, E[expr2] p, E[expr3] p)
E[fun L]p = .\ d.P(d,L,p)

'v\'here L is of the form p¡- > e¡lp2- > e2l ... Pn- > en, in •,vhich ea eh p, is a pattern and each e; is an expression.
d is a new identifier. Pis the function that defines the semantics of pattern matching and is dcfined in section 3.2.1

E[upr 1 e:r:pr 2] p = (E[expr¡] p)E[expr2] p
E[let identifier = expr¡ in expr2] p = E[expq] p[E[e:rprl] pfidentifier]
E[{e.rpr:}] p = §ingleton(E[expr] p)
E[{ upr :condition. qualifierlist}] p = (IF s ([[condition] p, E [{ expr :qualifierlist}] p, <P))
E[{e.rpr id in gene:rpr,qualifierlist}] p = AppS(.\ X. (E[{expr qualifierlist}] p[X/id]), (E[genexpr]p))

X is a new identifier.
E[{éxpr id in type, qualifierlist}] p type(d).(E[{e:rpr qualifierlist}] p[d/id])

d is a new identifier.

Figure 1: Denotational Equations

M(arg, [k], [e], p) =
If(DeqD(T[k], arg, k), Pair(True, E[e] p), Pair(False, 1_))

® Case 2: \Yhen the pattern is a variable :r:

Jvl(arg, , [e], p) = E[e] p[arg/x]

Case 3: \Yhen the pattern is the application of a constructor K with argument the pattern p:

M (arg, [K p], [e], p) = If(CheckCons(K, arg) .. \..1 (RetrCnstr(arg), [p], [e], p), Pair(False, 1_))

® Case 4: \rhen the pattcrn is a pair of patterns (p1 ,p2):

Jvl(arg, [(p¡,p2)], [e],p) =
Let a= Left(arg) in
Let b = Right(a.rg) in
If(And(N(a, pl),JI/(b, p2)),

Pair(True,(E[fun p¡- > (funp2- > e)]p)ab),
Pair(False, 1_))

N(arg, [kJ) = DeqD(T[k],arg, k)
N(arg, [x~) = True
N(arg, [K p]) = If(CheckCons(K, arg),N(RetrCnstr(K, arg), [p], False)
N(arg, [(p¡,p2)]) = And(N(Left(arg),p¡),.\'(Right(arg),pz)

In case 4, • VI relies on another semantic function called (.A/) that also performs pattcrn matching but
without making any bindings or evaluating expressions. After checking the correspondence, M transforms
the pattern matching to evaluate a curried version of the function.

633

3.2.2 Equality

Function DeqD is used for determining equality between values of a same type (a base type or a user­
defined type) by performing struc:tural equality between terms. It assumes that type synthesis has been
performed, so that the type of its arguments agree, and so that it can compute equality based on the type
of its arguments. The first argument is the type (this information should be available, for instance in the
expression's nade in the abstract syntax tree). vVe suppose we have a function BeqB that tests equality
between booleans, AeqA between atoms, and ZeqZ between integers.

® If the first argument is a base type, equality is tested with the appropriate function:

DeqD(t, x, y) = TeqT(x, y)
Where t E {bool, atom, int} and T E {E, A, Z}

"' If the first argument is a product type, the test is recursively performed in its constituent parts:

DeqD(t1 *t2,x,y) =
And(DeqD(t1, Left(x), Left(y)), DeqD(t2, Right(x), Right(y)))

® If the first argument is a sum type, it must match the constructors ancl then recursively test the
arguments of the constructors:

DeqD([],x,y) = _l

DeqD(CtiL,x,y) =
U(CheckCons(C, x),

If(CheckCons(C, y), DeqD(t, RetrCnstr(C, x), RetrCnstr(C, y)), False),
DeqD(L,x,y))

3.2.3 Primitive Functions

PowerFuL has primitive functions that are not usually found in other languages. Among these there are
sorne primitives that deal with constructors. This is also the case of the set-related primitixes: IsPhi, !Fs,

and The constant Phi and functions and type(X) .expT are constructor functions
ancl define new types of values available in the language's domaín.

is a primitive function that represents the application of a constructor of a sum-type.
CheckCons is a predicate that returns True if its second argument (a value) has a constructor, and it is
equal to the first argument (a constructor tag). Finally Ret:rCnstr removes the given constructor from its
second argument.

Given T a user-defined sum-type declared: í~ype T = C1 T1 1 ... Cn Tn. V/e define:

CnstrctApp : ConstructorTag(T) X T; --+ T
A constructor can be seen as a functíon of type: T; --+ T.

CheckCons : ConstructorTag(T) x D --+ B
CheckCons(Ci, CnstrctApp(C¡, e)) = True

= {C1, C2, ... , Cn}

CheckCons(Ci, CnstrctApp(K¡, e))= False Where K; cJ C;
CheckCons(Ci, e) = _l Where e is not a constructor application

RetrCnstr : ConstructorTag(T) x D --+ D
RetrCnstr(C;, CnstrctApp(C;, e))= e
RetrCnstr(C¡, e) = _l

Phi rcpresents the empty set. IsPhi is a predicate that returns True if its argument is Phi.
constructs a one-element set with its argument. constructs the union of its arguments (1ve use
".U." instead of .,.) to notation where , is defined as H except that if its
argument is undefined, it returns Phi instead of bottom (j_). Function distributes a function over all
the elements of a set and unions together all results. Its behavior over expressions of the form type(X).expT
is explained in the next section.

IsPhi : P(D) --+ B
IsPhi(Phi) = True
IsPhi(Sing!eton(expr)) = False
IsPhi(Union(expr¡. expr2)) = And(IsPhi(expq), IsPhi(expr2))
IsPhi(_L) = l_

IFs : B x P(D) x P(D) --+ P(D)
IFs(True,x,y) = r
IF 5 (False,x,y) = .'!
IFs(Lx,y) =Phi

AppS: (D--+ P(D)) x P(D)--+ P(D)
AppS(f, Phi) =Phi
AppS(f, Singleton(expr)) = f(expr)
AppS(f, Union(sl. s2)) =Union(AppS(f, sl), AppS(f, s2))

3. 3 N arrowing

This section summarizes the narrowing techniques used to obtain logic programming capability in
\Ye extend this technique to dea1 with user defined types.

In (),x.body, genero.tor), body should be applied to each element in Vvhen using types
instead of expressions, direct enumeration of the elements of a type is theoretically feasible. However,
making this a primitive an interesting optimization can be achieved.

E[{e:rpr : id E type, qualifierlist}] p = type(cl).(E[{expr: qualifierlist}]
\Vhere type is either a base type (i.e. bool. atom, or int), ora user.defined type.

In this case, instead of generating eYery element in a variable (d), constrained to take its values from
type, is usecL Thus. d becomes an enumeration parameter and is considered a logic variable. An expression
of the form

t(d) .body

caH be simplificd so that body does not have to be cvaluated for every element in t, as it would be done in

AppS(.\ d.body, t).

InsteacL body is eYaluated in its parametrisized form. This simplification is known as narrow'ing.
Even with a logic variable, an expression may be simplified. To describe a primitive applied to a logical

1·ariable the follmYing notation is used:

constraint('U).(... prirn(u) .. .).

Herc we 1cv·ish to simplify the primitive prirn which occurs sorne1Yhere in the body and has as argument a
logic variable u. Consicler for instance primitive in expression {e x in bool, ... not x ... } . This
translates into

bool(u).(. .. Not(u) ...).

By static type-checking we know that u is constrained to be in booL Hence, its only possible values are
True and False. Therefore, we can simplify (narrow) and obtain:

bool(u).(... Not(u) ...) = (... True ...)[False/u] U(. .. False ...)[True/u]

Another example: consider the expression

{e: x in atom, y in atom, ... x =y ... }.

This would be ultimately translated into something like

. (... y) ...)

that is, a primitive applied to two logical variables, and after narrowing would yield:

atom(x).(... True ...)[x/y] U atom(x).atom(y).(x =¡':. y).(... False ...).

Here we have divided into two possibilities: the equality is either True or False. If it is True, we bind
the two variables together and remove a constraint; if it is false, we add a new constraint that indicates
the inequality between the two variables. Therefore, for each logic variable we have type constraints and
inequality constraints. If AeqA is used with only one logical variable instead of two, the result is analogous,
but with less constraints:

atom(x).(... AeqA(x, a) ...) = (... True ...)[a/x] U atom(x).(x =¡':. a).(... False ...).

We have analogous rules for primitives that can apply to types that can be narrowed. We include
narrowing for equality primitives, Boolean primitives, and atom primitives, but we do not allow logic variables
for integer primitives, with the exception of ZeqZ which is analogous to AeqA.

bool(x).bool(y).(... BeqB(x, y) ...) = bool(y).(... y .. .)[True/x] U bool(y).(... Not(y) ...)[False/x].

The conditional can also be applied to a logic variable:

bool(x).(... IF(x, e1, e2) ...) = bool(y).(... e1 ...)[True/x] U bool(y).(... e2 ...)[False/x].

Now, for user defined types we need sorne special rules:

• If t is a product type of the form t1 x t 2 then

t(u).(... prim(u) .. .) = t¡(v).t2(w).(... prim(u) .. .)[Pair(v,w)/u]

\iVhere v and w are new variables. In this case the logic variable is replaced by a pair of new logic
variables each constrained to a given element type of the product type.

• If t is a sum type of the form C1 t1l C2 t2l ... 1 Cn tn then

t(u).(... prim(u) .. .) =
t 1 (v1).(... prim(u) .. .)[CnstrctApp(C¡, V¡)/u]
Ut2(v2).(... prim(u) .. .)[CnstrctApp(C2, v2)/u]

Utn(vn).(... prim(u) .. .)[CnstrctApp(Cn, Vn)/u]

Where vl, v2, ... , Vn are new variables. In this case, we divide the simplification arnong n alternatives
each of which assigns the logic variable to an object with a constructor, the argument being a new
logic variable constrained to the type associated to the constructor. If the i-th constructor does not
have an argument, it is treated as a constructor whose argument is Nil and there is no need for a new
logical variable:

t(u).(... prim(u) .. .) =
... U(.. . prim(u) .. .)[CnstrctApp(Ci, Nil)/u] U ...

This leads to the following rules:

• Given type t of the form t 1 x t 2 then

t(u).(... Left(u) ...) =
t¡(v).t2(w).(... v .. .)[Pair(v, w)/u]

t(u).(... Right(u) ...) =
t¡ (v).t2 (w).(... w .. .)[Pair(v, w)ju]

636

"' GíYen type t of the form

t(u).(... RetrCnstr(Ci, u) ...)=
tl(¡:¡) .(... l_ . ..)[CnstrctApp(C¡, VJ)/u]
Uf" (v2) .(... l_ . ..)[CnstrctApp(C2, v2) ju]

ut, (vi).(. .. u)[CnstrctApp(ci' Vi)/u]

ut n (Vn).(... l_ . ..)[CnstrctApp(Cn' Vn)/u l

Consíder for instance the following type definítion and the expressíon that refers to that type:

type t = int•bool ;

{e: x in t, snd x }

The expressíon's meaning ís of the form

t(u).(... Right(u) ...).

This should narrow as:
int(v).bool(w).(... "LL' .• .)[Pair(v, w)/u].

If the primitive was not a pair primitive, the result \Yould be .L
Another example: if we have:

type t = None 1 Sorne int;

{e: x in t, ... x=Sorne 2 ... }

will be translated into somethíng like

t(u).(... CheckCons(Sorne, u) ...).

This can be simplified as

(... Fuls"' .. .)[CnstrctApp(None, Nil)/u]U
int(t! .(... True .. .)[CnstrctApp(Some, u)/u1.

4 The A bstract Machine

The PA:\1 is based on the Categorícal Abstract Machine (CA.\1) [CCM85] [MA86] and borrows ideas form
the \Yarren Abstract "\hchine [\Var83] to implement its logic capabilities. The PAM's design resembles that
of the CA"\IEL [Muc92] which is used implement rule-based functionallogic languages. It ís important to
point out that EPowerFuL can not be ímplemented directly using CAMEL because this operational model
does not support sets as first class objects nor inequality.

The CA:\1 has the followíng data structures: a stack, a current value and a code. The values it deals
\Üth are atoms, pairs, closures for functional abstraction, and closures for dealing with lazy evaluation. The
PA!\I aclds two data structures: a heap to store logic variables and a choice point stack to deal with sets.
The PA"\I's state is given by 5-tuple:

(Value, stack, choice- point- stack, heap)

EPm1.·erFuL term representation as well as primitive instructions for each of PowerFuL's primitivc functions
must he defined. Atoms. integers, and booleans, basic ,·alues in CAML-Like's denotatíonal domain, are
basic Yalues in thc modified CAM. We add a constructor to represent pairs: Pair (. , .) explicitly.

OLD S TATE NEW S TATE
e V S H ep e V S H ep
app_s; e (clo(V,el) ,phi) S hp es e phi S hp es
app_s; e1 (clo(V,e) ,single(A)) S hp es e1 (V,A) e:S hp es
union;C (v,u) S hp es e V S hp cp(u,S,C) :CS 1

exe;C phi S hp cp(u,Si,C1): :CS e1 u Sl hp es

Figure 2: Transitions for Sets in the PAM

OLD S TATE NEW S TATE
e V S H CP e V S H CP

curu (t,K) ;C V S hp es e clou(u,v,K) S hp es
app,1; e clou(t,v,K) S hp es K (v,X) C¡:S ne•¿(t,X,X)©hp es
dot(X);e V S hp es e (_dot, (X,v)) C:S hp es

Where C¡ = (exe;dot(X) ;C)

Figure 3: Sorne PAM Instructions

A new constructor is added to represent singleton sets: single (.). An expression of the form:

can be interpreted as eJ;pr-1 or expr2. Operationally, this 1s interpreted as follows: vvhen a unían be­
tween two sets is found, the first subset is chosen as the result of the cornputation, and information is
stored so that the machine can restare it when computation of the first subset has concluded. Each choice
point savcs the state of the machine at any given moment and is vvith a four-placc functor:
cp (Code, Val u e , Stack, Heap) . The instruction that implements uníon introduces choice points. Its descri p­
tion is shown in Figure 2 along vvith the definition of app_s. Instruction exe is uscd to clrive computation.

Logic variables are created when implementing objects of the fonn

t(x)

vVe add a new constructor LogVar (.) (at tin1es abbreviated LV (.)) to distinguish logic variables from
other values. The heap is an array of variables in vvhich the following information is stored: its name, valuc,
type, ineqnality constraints, and a

hp(Name, Type, Value, Constraints, Dependency)

If a is variable created through narrowing, it on the variable that was narrowed to create it:
it dcpends on itself. \1\/hen a primitive cannot be applied because of a free variable, narrmving causes ncw
choice points to be added to the choice point stack ancl new logic variables may be created.

The symbol table and a table are active during execution time. The symbol table storcs information
regarding defined functions. The type table stores information relatecl to uscr defined typcs. This information
will be used to determine narrowing.

Two different structures are used to represent expressions of the form: type(X) .Exp. A new kind of
closure (callcd a constmined is used to represent unsimplifiecl constrained expressions: el o u (t, v ·' C)
where t is the type of the variable that is being constrained; C is the code which cvaluates the constrained
expression and v is the environment where it should be evaluated. Instruction cur u is used to builcl thesc
closures_ Variables created through narrowing are part of the value of the "top-most" logic variables, bnt
will not generate constrained closures. 1Nhen evaluation of a constrained is we create a
fully computed object of the form (_dot, (X, value)) where X can be bound to a value which may contain

created logic variables. This structure, in is only uscd when printing_
In Figure 3, transitions for building constrained closures and for applying constrained closures to newly

crcated logic variables are defined. f'J otation ne>; (t, X, D) ©hp is used to represent a heap that is construc:ted

br(e1,e2);e
br(e1,e2);e
br(e1,e2);e

not;e
not;e
not;e

OLD STATE
V S H

(true,V) S hp
(false, V) S hp
(LV(X) ,V) S hp

true S hp
false S hp
(LV(X),V) S hp

ep 1 e V
NEW STATE
S H

es e1 V S hp
es e2 V S hp
es e1 V S hp[true/X]

cp=cp(e2,V,S,hp[false/X])
es e false S hp
es e true S hp
es e false S hp [true/X]

cp=cp(e,true,S,hp[false/X])

Figure 4: Boolean Based P AlVI Instructions

ep
es
es
cp:eS

.
es
es
cp:eS

from heap hp by adding a new free logic variable X of t?pe t and that depends on Y. Instruction dot (X) also
defined in Figure 3 is called before printing a constrained expression

The general schema for narrowing is the following. The variable is assigned one of the possible values,
and the machine's data structures are modified accordingly. Additionally, choice points are introduced: one
choice point for each other possible value that the logic variable may have and the corresponding changes to
the machine's data structures. In fact, we are creating an alternative to which we will return when a failure
is encountered.

The basic narrowing scheme for PAl\I instructions that are applied to Boolean values is shown in Figure
-±. Instruction br (c1, c2) is used to implement conditionals. N otation hp [val/X] is used to represent a heap
iYhich is obtained from hp by assigning logic variable X the value val.

Figure 5 shows the transition tables for the implementation of AeqA. The interesting case is that in which
both arguments are logic variables. If they are the same variable, we replace the value by true and continue.
If their equality ¡yould violate a constraint of any of the two variables, we replace the value by false and
continue. Finally, if neither of these two cases occur. we bind the two variables together and replace the
Yalue by true and add a choice point in which an inequality constraint has been added and the value has
been set to false. Function comp(X, Y) receives tiYO unbound logical variables and returns true if the two
Yariables are the same variable. false if their equality would violate a constraint, and unknown otherwise.
The follm,-ing notation is used to indicate changes in the heap: bind(X, Y ,hp) to indicate that Yariables X
and Y are bound together and neq (X, Y, hp) to indica te that inequality constraints have been added for X
and Y indicating their inequality.

Instruction isA (a), described in Figure 5, is used to check if the current value is the atom a If the current
Yalue is is a logical Yariable say A, it checks if an inequality constraint would be violated if A=a. If so, the
current value is replaced by false. If not, A is assigned the value a, the current value is changed to true,
anda choice point in which with the constraint: A i= a and value false is added to the choice point stack.

Other narrowing schemes are shown in Figure 6. When applying fst to a logic variable x of type
(t ht2), two neiY logic variables: y and z are added, and x is assigned pair (y, z). Both newly created
¡·ariables depend on x. In this case no new choice pint are added. \Vhen applying the instruction that
implements constraint retraction to a logic variable x of type (C1 ti 1 ... 1 Cn t2), We add a choice
point for every Ci iYith the corresponding changes to the machine's data structures.

The PAM's correctness was proven in [Tak94].
Compilation consists in translating expressions in PowerFuL's denotational domain into PA:-1 instruc­

tions. The following is an excerpt of the translation scheme from PowerFuL denotational syntax to the
CAM.

C[A;]p=quote (A;)

C[>.x.E]p=cur CC[E]cp,x))
C[(Expr, Expr2)]p=

push; fre(C[Exprl]p); swap;
freCC[Expr 2]p); cons

C[Exprl Expr2]p= push; C[Exprl]p; swap;
freCC[Expr 2]p); cons; app

639

DLD S TATE NEW S TATE 1
e V S H ep e 1T S H ep

1

AeqA;e (a,a¡) S hp es IsA(a);e a¡ S hp es
AeqA;e (LV(x),a) S hp es IsA(a);e LV(x) S hp es
AeqA;e (a,LV(x)) S hp es IsA(a);e LV(x) S hp es
Where a is an atom
AeqA;e (LV(y) ,LV(x)) S hp es e true S hp¡ cp:eS

if comp(X,Y)=true
AeqA;e (LV(y),LV(x)) S hp es e false S hp¡ cp:eS

if comp(X,Y)=false
AeqA;C (LV(y),LV(x)) S hp es e true S hp¡ cp:eS
if comp(X,Y) = unknown hp¡=bind(X,Y,hp)

cp=cp(e,false,S,neq(hp,X,Y))

DLD S TATE NEW S TATE
e V S H ep e V S I-l eP

IsA(a) ;C a¡ S hp es e b S hp es
a¡ is an atoro b = (a= a¡)
IsA(a);e LV(X) S hp es e false S hp es

if comp(X,a) = false

IsA(a) ;e LV(X) S hp es e true S hp [a/ X] cp:eS
if comp(X,a) = unkno~1n cp=cp(e,false,S,neq(X,A,hp))

5: Transition Tables for with Variables

OLD S TATE NEW STA TE
e V S H ep e V S I-l ep

fst;e Pair(u,v) S hp es e u S hp es
fst;C LogVar(x) S hp es _bot V S hp¡ es
1,,7here X is of type t¡ * t2

Where hp 1 =
new(t 1 ,y, x) © new(t2,z, ,x) © hp[Pair(y,z)/x

When: CS'

and r; = ifK
anrl hp; =

640

DLD STATE NEW STATE
e V S H CP e V S H eP

retre(K) ;e eonsApp(K 'v) S hp es e V S hp es
retre(K) ;e eonsApp(K¡ ,v) S hp es e _bot S hp es
«he re K¡ #](

retre(K) ;C e S hp es e _bot S hp es
,;he re e is not of the form eonsApp (,)
retre(K);e LogVar(x) S hp es e rl S hpi es•
v1here x is of type t= e1 Ti 1 ''' 1 en Tn

cp(C,rn,S,hpn)
C¡ then LogVar(u¡) else ~bot
new(t¡, u¡, x) © hp[ConsApp(C¡,u¡)/x

Figure 6: Narrowing for User-defined types

C[ConstructorApp(K, Expr)]r=
freCC[Expr]p);
mkCnstr(K)

C [Left(Expr)]r=C[Expr]p; unf; fst

C[RetrCnstr(K, Expr)]r=C[Expr]p ;unf; retrC (K)

C[type(x) .Expr]p=curv (type, C[ExpT](p,o); unf)

5 Conclusions

Power FuL is a declara ti ve programming language t.hat. uses a pure functional language as a starting point.
ancl achieves logic programming capabilities through relative set abstraction. Its approach is interesting in
that sets and functions are considered first class objects both syntactically and sernantically through t.he use
of domain theory as a unifying semantics.

However interesting from the theoretical point of 1·iew, PowerFuL's is not very user-frienclly.
and it lacks many of the features are provided by moclern functionallanguages. EPowerFuL addresses thesc
drawbacks by adding a type system and changing the syntax so that it. resembles modern functionallanguages
\'\·hile keeping relatiYe set abst.raction so the language's logic programming capabilities are maintained. The
resulting language is a strongly typed language which is easier to use. Strong typing also simplifies its
semantics, for most of t.ype checking is done at compile time instead of at execution time.

The language is in an early of de,-elopment. and the current implementation does not support the
more adyancecl features such as polymorphic types. Its syntax is also sornewhat restricted. a
stack-based implementation model is defined for the language shmving its feasibility, andan implement.atior1
of this model has been constructed using OCAML.

References

[DL86]

[CCM85]

[.JP97J

[l\IA86]

[:\Iil84]

l\I. Bella and G. Levi. The Relation Bct\\·een Logic and Funcitonal Languagcs: A Survey. .Jounwl Logzc
Pmgmmming, 3:217~236, 1986.

G. Cousineau, P-L. Curien, and :\I. l\Iauny. Thc Catcgorical Abstract Mac:hine. In .J-P .Jouannaud, edi­
tor, Fnnctional Pmgmmming Languages and Compnter Architectnre, LNCS 201, pages 50~6"1. Springer-
Yerlag, .\"ancy, 1985.

et. al. J. Peterson. The haskell report-version 1.4. http:/ /haskell.org, 1997.

:\1. :\Iauny and A.Suarez. Implementing functional languages in the categorical abstract machine. In
A CM Symposium on LISP and Functional Programming, pages 266~278, Cambridge, 1986.

R. :\Iilner. A propasa! for standard mi. In A CM Symposium on LISP and Functwnal Pmgramming.
pages 184~197, Austin, 1984.

[l\1.01RA92] J. l\Ioreno-1\'avarro and lVI. Rodriguez-Artalejo. Logic Programming with Functions and Predicates: The
Langnage Babel. The Journal of Logic Progmmming, 12:191~223, 1992.

[l\ITH:\197] R. !\Iilner, l\•I. Tofte, R. Harper, and D. MacQueen. The Dediniton of Standard ML (Rcvzsed). i\IIT
Prcss. Cambridge, 1997.

[:\Iuc92]

[S.J92]

[Tak94]

[\Var83]

A. !\1 uck. CAMEL: An extension of the categorical abstract m achine to compile functional-logic programs
In 1\1. Bruynooghc and M. \Yirsing, editors. 4th intemational Symposmm PLILP 92, pages 341~354
Lueyen, Belgium, 1992.

F.S.K. Silbermann and B. Jayaraman. A domain-theoretic approach to functional and logic programming
Journal of Functional Pmgrammmg, 2(3), 1992.

S. Takahashi. An Abstract Operatwnal Model for a Punctional-Logic Pmgmmrning Langua.ge. PhD thesis.
T ulane L nh·ersity, N ew Orleans, 1994.

D. \Yarren. An abstract instruction set for prolog. Technical Report 309, SRI International, 1983.

